Hot-Electron Generation at Direct-Drive Ignition-Relevant Plasma Conditions at the National Ignition Facility

Laser intensity ($\times 10^{15}$ W/cm²)

58th Annual Meeting of the **American Physical Society Division of Plasma Physics** San Jose, CA

A. A. Solodov **University of Rochester** Laboratory for Laser Energetics

31 October-4 November 2016

Summary

A laser-energy conversion efficiency of ~1% to 3% into hot electrons with T_e ~ 45 to 60 keV was inferred

- Planar-target experiments at the National Ignition Facility (NIF) reproduce direct-drive (DD) ignition-relevant plasma conditions
- The properties of hot electrons were inferred using the measured hard x-ray spectra and Monte Carlo simulations
- The beam angle of incidence did not have a strong effect on the hot-electron production
- Hot-electron levels suggest a need for preheat mitigation; the use of Si ablators for preheat mitigation was investigated

Collaborators

M. J. Rosenberg, J. F. Myatt, W. Seka, M. Hohenberger, R. Epstein, R. W. Short, J. G. Shaw, S. P. Regan, D. Turnbill, D. H. Froula, and P. B. Radha

> University of Rochester Laboratory for Laser Energetics

J.W. Bates and A. J. Schmitt

United States Naval Research Laboratory

P. A. Michel, T. Chapman, J. D. Moody, J. E. Ralph, and M. A. Barrios

Lawrence Livermore National Laboratory

Planar NIF experiments explore laser–plasma interaction (LPI) instabilities and hot-electron production in DD ignition-relevant plasma conditions

Coronal conditions predicted by DRACO radiation-hydrodynamic simulations

Parameters at n _c /4 surface	OMEGA*	Current NIF DD**	Ignition NIF DD***	Planar NIF
I_{L} (W/cm ²)	<4 × 10 ¹⁴	$\textbf{4.5}\times\textbf{10^{14}}$	6 to 8 $ imes$ 10 ¹⁴	5 to 15×10^{14}
<i>L</i> _n (μm)	<350	350	600	500 to 700
T _e (keV)	<2.5	3.5	3.5 to 5	3 to 5

*S. X. Hu et al., Phys. Plasmas 20, 032704 (2013).

** M. Hohenberger et al., Phys. Plasmas 22, 056308 (2015). *** V. N. Goncharov et al., TO5.00003, this conference.

The scaling of hot-electron properties with laser intensity in CH targets was studied using large-angle beams

DRACO-simulated coronal conditions at $n_c/4$

	N151117-003	N151118-002	N151118-001	
<i>I</i> (W/cm ²)	6 × 10 ¹⁴	10.5 × 10 ¹⁴	$15 imes 10^{14}$	$\eta_{ m SRS} = I_{14} L_{ m n, \mu m}^{4/3}/2377 \sim$
L _n (μm)	480	490	500	$\eta_{\text{TPD}} = I_{14}L_{n,\mu m}/(230 T_{e,keV})$
T _e (keV)	3.0	3.9	4.8	

The stimulated Raman scattering (SRS) and two-plasmon decay (TPD) absolute-instability thresholds^{*,**} are exceeded in this experimental design.

> *C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids <u>17</u>, 1211 (1974). **A. Simon et al., Phys. Fluids 26, 3107 (1983).

TC13049

10 to 25 v) ~ 4 to 7

Hot-electron production in CH and Si targets was studied using small-angle beams

DRACO-simulated coronal conditions at n_c/4 (4.5 to 7.5 ns)

	N160719-003, CH	N160421-001, CH	N160719-001, Si
<i>I</i> (W/cm ²)	6 × 10 ¹⁴	11 × 10 ¹⁴	9 × 10 ¹⁴
L _n (μm)	670	690	560
$T_{e} (\text{keV})$	3.6	4.4	5.2

Hot-electron properties were inferred using the measured hard x-ray spectra

• Time-integrated hard x-ray spectra obtained using the filter-fluorescer x-ray diagnostic (FFLEX)*

 Hot-electron energy was inferred from comparing the x-ray spectra and EGSnrc** Monte Carlo simulations

^{*}M. Hohenberger et al., Rev. Sci. Instrum. 85, 11D501 (2014).

^{**} I. Kawrakow et al., National Research Council Canada, Ottawa, Canada, NRCC Report PIRS-701 (May 2011).

The inferred laser energy to hot-electron conversion efficiency increases from ~1% to 3% with the laser intensity

Hot-electron conversion efficiency and temperature (4.5 to 7.5 ns) versus laser intensity at $n_c/4$

- The use of a Si ablator reduces the energy of hot electrons above ~50 keV (relevant to preheat) by ~35%, compared to the relevant CH shots
- Hot-electron production is attributed to SRS, which dominates LPI in these experiments*

Hot-electron levels suggest a need for mitigation

- The ignition target performance is negatively affected if more than ~0.15% of the laser energy is coupled into the cold fuel in the form of hot electrons*
- If electron divergence is large, only ~25% of the hot electrons will intersect the cold fuel and result in preheat**
- Electrons with energy below ~50 keV will be stopped in the ablator and will not preheat the compressed fuel
- Hot-electron preheat mitigation is needed if more than ~0.7% of the laser energy is converted to hot electrons at $T_e \sim 50$ to 60 keV
 - ignition designs with $I > 5 \times 10^{14}$ W/cm² at $n_c/4$ need preheat mitigation
 - the use of Si ablators for preheat mitigation is investigated

*J. A. Delettrez, T. J. B. Collins, and C. Ye, Bull. Am. Phys. Soc. 59, 150 (2014). ** B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013). Hot-electron divergence will be investigated in Mo-ball experiments on the NIF.

Summary/Conclusions

A laser-energy conversion efficiency of ~1% to 3% into hot electrons with T_e ~ 45 to 60 keV was inferred

- Planar-target experiments at the National Ignition Facility (NIF) reproduce direct-drive (DD) ignition-relevant plasma conditions
- The properties of hot electrons were inferred using the measured hard x-ray spectra and Monte Carlo simulations
- The beam angle of incidence did not have a strong effect on the hot-electron production
- Hot-electron levels suggest a need for preheat mitigation; the use of Si ablators for preheat mitigation was investigated

